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S I M U L A T I O N  O F  H E A T  E X C H A N G E  O F  A 

L I T H O S P H E R I C  P L A T F O R M  I N  T H E  Z O N E  O F  

S U B D U C T I O N .  I .  S T A T E M E N T  O F  T H E  P R O B L E M  

S. V. So lov 'yov  U DC 536 

The problems of  numerical simulation of  the processes of  the thrust o f  an oceanic platform under a 

continental platform are considered. Numerical experiments on the calculation of  the thermal state and 

evolutton of subsidence of  the oceanic platform in the zone of  subduction are carried out. It is found  that 

the maximum depth of  subsidence of  the oceanic platform does not exceed 720 krn. 

In recent t imes, an ever increasing number  of research workers a t tempt ing  to explain the na ture  of the 

mechanism of convection in the ea r th ' s  mantle  have di rec ted  their  a t tent ion to the zone of subduct ion,  because the 

mechanism involved in subs idence  of the subduct ion platform into the mantle  is an essent ia l  part  of the mechanism 

of mant le  convection. 

Subduct ion zones ( is land arcs and active cont inental  margins)  of the Pacific Ocean type are  charac ter ized  

by intense seismicity.  A cons iderab le  portion of the seismic activity is concent ra ted  in the region of an inclined 

plane subsid ing at an angle  of about  45 ~ inward from the trench under  the island arc or cont inenta l  margin.  These  

seismic planes (Benjoff zones) represent  large tectonic displacements .  Most often, the Benjoff zones subs ide  at an 

angle of 4.~ ~, but in different  is land arcs a range of subs idence  angles of from 30 ~ to 90 ~ was discovered.  Even in 

the same island arc the subs idence  angle of the zone can change appreciably ,  usually increas ing with an increase 

in depth.  

In a first approximat ion ,  the subsided part of a subducted  platform can be cons idered  a very viscous fluid 

(,u = 1023 Pa .sec)  11, 2 1. According to [1, 2 ], the viscosity, of the mantle  under ly ing  the l i thosphere  is a ssumed  to 

be l* = 102o Pa . sec .  

From the results  of [3, 41 it follows that the decay of radioactive e lements  conta ined in the e a r t h ' s  crust 

and  mant le  makes a subs tan t i a l  cont r ibut ion  to the energy  balance  of the earth.  Therefore ,  when s ta t ing a 

mathemat ical  model,  it is necessary  to take into account the heat  release of radioactive e lements  as a result  of their  

decay.  

In the works publ ished for the past 20 years  and  devoted to the development  and use of quanti ta t ive 

methods  for inves t igat ing the zones of subduct ion (under thrus t )  of l i thospher ic  platforms,  lhermomechanica l  

convection is p redominan t ly  s imula ted  and the s t ressed state is de te rmined  (see, for example ,  12, .5-7 ]). 

The  problem of de t e rmin ing  the geometr ic  form of the subs ided  portion of a subduc ted  platform by 

quan t i t a t ive  me thods  r ema ins  v i r tua l ly  open.  In ]1 1 a model  is sugges ted  that  exp la ins  the mechan i sm of 

u n d e r l h r u s t  from the v iewpoin t  of the g r av i t a t i ona l  i n s t a b i l i t y  of the  heavy l i t hosphe re  above  the l ighter 

as thenosphere .  The geometric  form of the subsided portion of a subducted  platform obta ined  in [5 ] is d isputable .  

since at the present  time there are no reliable proofs support ing the existence of an abnormal  mantle.  

Investigation of the o l i v ine - sp ine l  phase t ransi t ions and calculation of the s t ressed state of the subs ided  

portion of a subducted  platform are given in 18 ]. In that work the o l i v ine - sp ine l  phase t ransi t ion is taken into 

account as a dcnsi ty  jump in the zone of transit ion.  A mathematical  modcl developcd bv the authors  of ]9 ] makcs 

it possible to de te rmine  the depth of subs idence  from the known trajectory and rate of subs idence  of the platform. 

Two-d imens iona l  models  of convection in a compress ib le  liquid with constant  and  var iable  viscosities 

presented  in 13] showed that in the case of convection with a variable viscosity', the nonl inear  interact ion of 
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Fig. 1. Diagram of the solid b o d y - l i q u i d  phase transit ion,  y, kin; T, K.. 

compression,  ad iaba t ic  and  viscous heat ing,  t empera tu re -dependen t  rheological properties,  pressure,  and  shea r  

s tress  leads to impor tan t  consequences:  the ascending flow expands  and plumes are retained,  the flow is s t rongly 

concent ra ted  as the subs idence  region is approached  and loses coupling with the inner  regions of the cell, separa t ing  

from them by a zone of reduced  viscosity. Around the submerging  platform two regions of reduced viscosity are 

formed, which effectively prevent  mixing of the platform mater ia l  with the sur rounding mantle. 

According to seismic invest igat ions,  the material  of the mantle  under  the continental  and oceanic platforms 

is in a molten s la te  to dep ths  of up to 500 kin. 

In [I ] a mathemat ica l  model of the s imultaneous motion of a . . . .  It and a solid phase {partial melting) is 

suggested.  It is shown that under  the action of deformation such a system stratif ies,  i.e., a system of a l te rna t ing  

bands  deple ted  and enr iched  in the molten substance is formed. 

Melting of the mant le  mater ial  occurs over a ra ther  large range {from the solidus tempear lure  T s to the 

liquidus t empera tu re  T I) and is accompanied by' the absorpt ion of heat L/.. (latent heat of melting).  Curves of 

phase- t rans i t ion  t empera tu re  versus depth that character ize  the solid b o d y - l i q u i d  transit ion diagram are presented  

in Fig. 1. 

If wc assume that  the mater ial  of the l i thosphere and of the under lying manllc is a viscoelastic fluid, then, 

using methods  of numer ica l  s imulat ion,  it is possible to dcscr ibe  the zone of subducl ion by a mathematical  model 

whose solution will allow us to obtain the tempera ture  and velocity fields and to follow the evolution of the melting 

front. In this connect ion ,  of great  interest  is de te rmina t ion  of the trajectory of the melting front of the oceanic 

platform dur ing  its subs idence  into the ea r th ' s  mantle.  This  will make it possible to est imate the effect of the 

subs idence  of the oceanic platform on the processes occurring in the Benjoff zone. In [2] a simplified model  was 

cons idered  which involved Newtonian  theology and constant  solidus and liquidus temperatures  of the mant le  

pyrolite.  In the work cons ide red ,  non-Newtonian  rheology is introduced into the mathematical  model; to calculate  

the zones of part ia l  mel t ing,  sol idus and liquidus temperatures  were used that depended on the water  pressure  and 

concentrat ion.  
To develop a mathemat ica l  model for the subduct ion zone, the following assumptions  were adopted :  

1. T h e  m a t e r i a l  of which the l i t h o s p h e r e  and u n d e r l y i n g  man t l e  cons is t  is c o n s i d e r e d  a v iscous  

incompress ible  fluid. 
2. The  interface between the l i thosphere  and the mant le  is the isotherm of the solidus t empera tu re  of 

per idot i te  Ts .  

3. The  viscosity,  thermal  conductivity,  and  heal release of the material  are de termined as functions of the 

position of lhe phase interface between the l i thosphere and mantle  in the following manner:  

{ 
~L, I ,  q v t  = 

,u I ' ,)tl , qvl  } for T < T s ; 

{ t~.~ , A ~ , qv2 } for 7" > T~ ; 

(l) 
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The subscript 1 refers to the characteristics of the lithosphere and subscript 2 to the characteristics of the 

ear th ' s  mantle. 

Determination of the theology of the lithosphere, asthenosphere,  and mezosphere is a ra ther  complex 

problem. Some approaches to the description of their rheology are presented in [4, 10, 11 ]. And though the existing 

opinions on the rheology of the lithosphere and of the ear th 's  mantle are ambiguous, the most appropriate depend-  

ence for calculation of dynamic viscosity is the following: 

kT 
, u  - -  2 exp 

r 
1 + - -  2 

1- t 

+ P V *  
R T  

(2)  

where T is the temperature,  E* and V* are the energy and volume of activation, R is the gas constant ,  ~ is the 

shear  stress, r t is the shear stress at which the dislocation mechanism of creep appears, and k is the Boltzmann 

constant.  

The quantity r t is defined by the empirical formula 

= 4 .104  T ] 
: t  - 0.25 ) 

-4  
, (N /m2)  , 

where Tm is the melting temperature of dry fosterite. 

We shall adopt dry fosterite as the basic component of the mantle; then for a developed flow the quantities 

entering into formula (2) will have the following values: 

Tin=2170 + 1.5"10-3y, K; V*=1.1"10 -5  ,m3/kmole ;  E*=5.225 .105  j /mo le ;  

pressure P is determined as the hydrostatic pressure: P = Pal + PgY, N/m2. 

When solving the Navier-Stokes equations of motion, the value of dynamic viscosity was determined from 

relation (2). Along with relation (2), we also considered Newtonian rheology, where the dynamic viscosity assumed 

the following values: 

A,u , T <  Ts ; 
I, = (3)  

PO, T > T s . 

The use of expression (3) to determine viscosity makes it possible to model the asthenospheric  layer as a 

region owing its existence to partial melting of the mantle. The coefficient of the drop in viscosity A changes within 

the limits of 1 -1000 .  To decrease the fluctuations of the solution, in calculations the dependence  (3) was 

approximated by a smooth function 

t~ = ~ 0  I1 + ( A -  1)1 0 . 5 + ~ t a n ~  . 

Calculations were also performed for constant (mean integral) values of !~, 

4. The value of the matertial  densi ty depends on the position of the phase interphase between the 

lithosphere and mantle and is determined from the formulas 

t Pl (1 - f i T )  for T <  Ts; (5) 
P = P 2 ( l  - f i T )  for T > T;" 

5. According to investigations of the fractional melting of the mantle pyrolite carried out by Ringwood and 

Green, the relative quantity of the solid phase V' = V~/(vI + vs) (Vs, Vl are the volumes of the solid and liquid 
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TABLE 1. Physical Parameters  

Parameters Lithosphere Mantle 

Viscosity,u,  (Pa. sec) 

Thermal  conductivity 2, W / ( m .  K) 

Density p, kg /m 3 

Heal release qv, W/m3 

Specific heat capacity cp, J / ( kg .  K) 

Coefficient of volumetric expansion ,6, K-  1 

Heat of melting LF, J / k g  

1022 

3 

3000 

- 5 . 1 0  -6 

1200 

3 .10 -5 

4.10 5 

1020 

5 

3300 

i0 -9  

1200 

3 .10 -5 

4 .10 5 

phases) that characterizes the melting and crystallization of the material is a function of the temperature, pressure, 

and of the concentration of the water. In the calculations in the present work, we used the following relation [9 ]: 

T - r ,  
2 

T - T l 

3 

- 3  
T - r ~  
T l - T s 

for T <  Ts; 

2 
+ 1 for T s <_ T <_ T I ;  (6) 

for T > T l . 

Here Ts and T l are functions of the water pressure and concentration. It is assumed that the upper and lower zones 

of partial melting are determined by the limiting value gqim = 0.95 for the mantle conditions, i.e., when r _< ~/qim 

the mantle material is in a liquid slate and when 71, > ~/'lim it is in a solid slate. 

The values of the physical quantities for the lithosphere and mantle are presented in Table 1. 

According to the hypothesis advanced by G. Hess in 1960 [12 ], the motion of the lithospheric platforms 

from the zones of formation (middle oceanic crests) to the zones of underthrust  (island arcs) is rectilinear, therefore 

the problem of subsidence of the lithospheric platform into the ear th 's  mantle can be considered two-dimensional 

(the x axis is directed along the motion of the platform, the y axis is directed along the normal to the plane of the 

platform). The geometry of the problem is depicted in Fig. 2. 

Within the framework of the assumptions made, the mathematical model of the problem considered in the 

present work is described by the following system of differential equations 

motion equations of a solid medium (Navier-Stokes equations): 

( Ou Ou Ou ) or, o ( ou ) o (ou  o ( O r )  
p ~ + , ~ + ~  = - o .  +o.~ 2 , , ~  + ~  *'o3--, + ~  ~ ' ~  ' 

C7~ 

[, . ,  av o.)  op 0 ( a v )  0 ( 0v] 
t, , '-7 + " ~ + " ~ = - ~ +oN " ~ + 77; 2,. 

where Ti is a certain fixed temperature (reference point); 

continuity equation: 

~ +  --+ - - = 0  
0 t 0 X 0y 

0 + ~  + p g C 3 ( T -  TI) ,  (8) 

(9) 

energy conservation equation: 
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Fig. 2. Physical  s ta tement  of the problem. 

/ m'~f ~ + ~ , ~ +  ~ = ~  , ~  + ~  , ~  

2 2 2 l 

+q~'+~ 0.-7 + ov +2 ~ +o.~ ; 

+ 

10) 

where 

C'ef 

co for T < T s ; 

cp = L F d ~  for T s < T < TI  ; 
d t  - - 

cp for T > T l " 

(11) 

state equation: 

,o = , o i ( l  - f i T ) ,  t =  1,  2 .  (12) 

The model adopted  employs the Boussinesq approximat ion.  

We seek a solution of the problem in a rectangular  region wilh d imensions  l x along the x axis and  ly along 

the 3' axis (Fig. 2) in which two l i thospheric  platforms move opposite each other. Under ly ing  the platforms is the 

mantle.  

The upper boundary  of the computat ional  domain is assumed to be the day surface of the earth.  At a depth 

of about 100 m from the ea r th ' s  surface the tempera ture  is vir tually constant  and equal to T i = 273 K, with diurnal  

and annual  variat ions virtually not influencing its magnitude.  The velocities of the platforms on the upper  boundary  

are  known and equal to uc = 1 c m / y e a r  for the cont inental  platform and to uo = 6 - 9  e r a / y e a r  for the oceanic 

platform [3, 4 I. 
ThL" boundary  condit ions for the tempera ture  and velocities on the upper boundary  of the computat ional  

domain,  i.e., on the day surface of the ear lh ,  will have the following form 

T ( x ,  ly,  t ) =  T i ;  

u .v< 5 ,  l v, t = U c ;  u x >  2 ,  /v, t = u 0 ;  u ~- ,  l v, t = 0 :  v ( x ,  l v, t ) = O .  (13) 

It Is most convenient  to let the lower boundary  of the computat ional  domain be at a depth  at which 

per turbat ions  of the tempera ture  and velocity fields caused by subsidence  of the l i thospheric platform art: absent .  

From seismic investigations of zones such as island arcs and active continental  margins,  it follows that a subducled  
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platform is subs ided  to a depth not exceeding 700 km [3, 4 1. In the adopted  computat ional  domain the lower 

bounda ry  cor responds  to the depth of the platform subsidence  ly = 1000 kin. Unfor tunate ly ,  there are  no accurate  

da la  on the t empera tu res  and velocities at this depth.  According to the investigations and calculat ions car r ied  out 

in [3, 4 ], the value of the t empera ture  T 2 at a depth of I000 km is taken to be equal to 2400 K and the absence  

of any  flow is a s sumed  for the velocity field. 

Proceeding  from the foregoing, the boundary  condit ions at the lower boundary  of the region cons idered  

have the following form: 

T ( x ,  O,  t) = T2; u ( x ,  0 ,  t) = 0 ;  v ( x ,  0 ,  t) = 0 .  (14) 

The  next complex problem is de te rmina t ion  of the extent  of the computat ional  domain in the x direction.  

Since two l i thospher ic  platforms with a total extent  of 15 ,000-20 ,000  km, part icipate in the process of subduct ion 

( thrust  over and  under ) ,  then,  taking into account the length of both platforms,  it will be pract ical ly impossible  to 

solve the  problem,  because the thickness of the subducted  platform is on the o rde r  of 70 km, which is less than 

1/200 of the lengths of both platforms.  However, a more thorough analys is  of the pat tern of flow and tempera tu re  

field shows that  the vertical  velocity and temperature  profiles should change only in the zones of the formation and 

subs idence  of the platforms [3, 4, 13 ]. Over the remaining port ions the vertical velocity and t empera tu re  profiles 

do vir tual ly not change  for a r a the r  long period of time. 

Thus ,  if we exclude from the computat ional  domain the port ions removed from the zones of formation and 

subduct ion  of the p la t forms at  a d i s tance  of more than 2000 kin, we may assume that the flow pat tern  and 

t empera tu re  fields in these zones change insignificantly.  This assumption is confirmed by the results  of numerical  

calculations.  

Taking  this assumpt ion  into account,  we included in the computat ional  domain two platforms,  each having 

a length of 3000 km. It is a s sumed  that the results of solution of the problem are quite adequate  for longer platforms.  

Thus,  the computa t ional  domain  is bounded by rift zones that are character ized by periodicity condi t ions  for 

t empera ture  and by s l ippage condi t ions for velocity. The boundary  condit ions on the lateral boundar ies  of the 

computat ional  domain  will have the form 

OT m~,y,t) = 0 .  u(O,y , t )=O; 
OX 

ov(0, y,t)=0. 
0 x 

OT (l x, ),, t) Ov (l x, y, t) 
- 0 ;  u( l v ,  v , t ) = O ;  - 0 .  

Ox - " ,?x 

(15) 

Now, it is n e c e s s a r y  to wri te  the initial  condi t ions .  However,  the se lect ion of init ial  condi t ions  for 

t empera ture  is a r a the r  complex and as yet unsolved problem. Therefore ,  in the present  work, without claiming 

absolute  val idi ty  of the choice, we adopt  the following initial condit ions:  

T =  T 2 
T 2 -- T s 

V 
93.104 - 

x ~  IO; lx l"  >,E 1 0 ; 9 3 - 1 0 4 l ;  

T s - -  T 1 
T = Ts 7"104 ( 3 ' -  9,:1"10 a) x E [0; l x ] ; 3' E [0; 93- 104; 10 r ] : 16) 

u ( x , y , O )  = v ( x , y , O )  = O, 

Here y is measured in meters. 

Let us write the problem in d imens ionless  form. For this purpose,  as a scale we take the following quanli lms:  

the d is tance  is given by the height of the region /y; 
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~'2 
veloci ty  by ; t e m p e r a t u r e  by (T 2 - T I ) ;  

- p 2cply 

viscos i ty  by /J2 ; p re s su re  by 
~.2,u2 ,,l 2 (T  2 - TI)  / ~  

P2Cp ~ ; heat  r e lease  by. 12y ; t ime by "~2 ' 
(17) 

After  s imple  t r a n s f o r m a t i o n s ,  the d i m e n s i o n l e s s  equa t ions  tha t  d e s c r i b e  the  na tu r a l  convec t ive  hea t  t r ans f e r  

in the s u b d u c t i o n  zone will have the form 

p~ -~- + U -d-~ + V a y ) = - aT X + O- ~ 2q O X ) + ~ ~1 B y ) + ~  q - ~  �9 

p (OV OV OV) aP 0 ( O V )  0-~( OVI 0 ( O U )  (19) 
yf- + U-d-X + v ~ = -  0 - - ~ + - ~  r / ~  + 2q ~-d-Y'] + o-x q -dY + p R a 0 ;  

0 o V  (20) + + ~ = 0 ; 
Or OX o Y  

H ere 

pC 7~ + v-g-x + -S-r = 7 s  A T  + ,A-s 

+ Q + ,K 7s  + l ~ )  + ~ T f  + ox] " 

+ 

x Y y t.a. 2 t~2cply vP2cply pp2Cp~ 
X = - - ;  = - - ;  r = - - 2 ;  U =  " V =  ," 17= " 

ly ly P2Cply 22 2 2 2 y~ 2 

p /l J. Cef 
c : 7 ;  o : - -  

T -  T 1 qv/, 2, 

T2 - TI Q = ).2 (T2 - TI)  

c#* 2 
Pr  = --~- 2 P r and t l  n u m b e r ;  

2 
Ra = P r . O r  = Pr  p2~gfl" (T2 - TI)  

2 
tl 2 

Ray le igh  n u m b e r ;  

K = 
2!~ 2,t 2 

2 2 
P2Cp~ (T2 -- TI)  

- d i m e n s i o n l e s s  n u m b e r .  

T h e  b o u n d a r y  cond i t ions  in d i m e n s i o n l e s s  form are  

o (x ,  l , r ) = 0 ;  0 ( X ,  0, r ) =  1; 

(21) 

(22) 

00 (0, Y, r)  O0 (Ix~l),, Y, r)  
= = 0 ;  

0 X 0 X 
(23) 
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U ( X <  l~/21y, l , r )  = U c = u c (24) 

U ( X  > lx/2ly , l , r )  = U 0 = u o (25) 

U(O, Y,r) = U(lx / /y ,  Y , r )  = U ( X , O , , )  = 0 ;  (26) 

o v (o, v, ~) _ ,~ v ( ( / t y ,  Y, r) 
- = v ( x , o , r ) = O ;  oX oX 

(27) 

C = 

1 for 0 < Os; 

1 0~, for 0 s < 0  <01; 1 - sign (0 r + a r - 0  r ) St---e 00 - - 

1 for 0 > 0l; 

or, 6 ( o - G ) ( o - o ~ )  

00 (0 t - 00 3 

Here SIc = cp(T2 - T1)/LI-. is the Stefan number.  

The initial condit ions in dimensionless  form are 

I - 0 s 

O =  1 0.93 Y X E  [O, l x / ' y l ;  Y E  10 ,0 .93 l ;  (28) 

O=Os. 1 - Y (20) �9 0.07 X ~ [0, lx/ly] " Y ~ [0.93, I I ' 

U (X ,  Y, 0) = V(X, Y, 0) = 0 .  

Est imat ing the inertial  terms on the left sides of equations of motion (18) and (19) and taking into 

consideration the value of the Prandt l  number  Pr -- 2.4.1022 , we conclude that they are much smaller  than the 

viscosity terms; therefore, we ignore them in what follows. 

The values of lhe dimensionless  numbers  for the problem are: Ra = 1.7. I07: Pr = 2,4. 1022; Ste = 6,4: K = 

3.10 -~. 

Gravitat ional  convection in a liquid laver appears when Ra -> Racr, where Racr is the critical Rayleigh 

number,  whose value depends on the type of boundary conditions. For the problem considered Racr - 1700, which 

is much smaller than Ra = 1.7.10 ?. From this we can conclude that the convection is developed in the upper mantle 

f the earth, since the Pr number  is large; the intensi ty of convection in the mantle is insignificant: the motion of 

the mantle is slow and the mode of flow is laminar.  

II i5 eviden! thal the dimensionless  complex K, which lakes inlo account the contribution of dissipation 

energy to the energy balance, will be important only in the region of high velocity gradients. 

'Fhe differential equations and boundary  conditions (18)-(29) fully describe a mathematical model- that  

allows one to calculate the geometry of the melting front of the oceanic lithosphere in the zone of subducfion. 
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