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SIMULATION OF HEAT EXCHANGE OF A
LITHOSPHERIC PLATFORM IN THE ZONE OF
SUBDUCTION. I. STATEMENT OF THE PROBLEM

S. V. Solov'yov UDC 536

The problems of numerical simulation of the processes of the thrust of an oceanic plutform under u
continental platform are considered. Numerical experiments on the calculation of the thermal state and
evolution of subsidence of the oceanic platform in the zone of subduction are carried out. It is found that
the maximum depth of subsidence of the oceanic platform does not exceed 720 km.

In recent times, an ever increasing number of rescarch workers attcmpting to explain the naturc of the
mechanism of convection in the earth’s mantle have directed their attention to the zone of subduction, because the
mechanism involved in subsidence of the subduction platform into the mantlc is an esscntial part of the mechanism
of mantle convection.

Subduction zones (island arcs and active continental margins) of the Pacific Ocean type are characterized
by intense seismicity. A considerable portion of the seismic activity is concentrated in the region of an inclined
plane subsiding at an angle of about 45° inward from the trench under the island arc or continental margin. These
scismic planes (Benjoff zones) represent large tectonic displacements. Most often, the Benjoff zones subside at an
angle of 457, but in diffcrent island arcs a range of subsidence angles of from 30° to 90° was discovered. Even in
the same island arc the subsidence angle of the zone can change appreciably, usually increasing with an increasce
in depth.

In a first approximation, the subsided part of a subducted platform can be considered a very viscous fluid
(u = 10%® Pa-sco) [1, 2]. According to [1, 2], the viscosity of the mantle underlying the lithosphere is assumed to
becu = 10% Pa-scc.

From the results of [3, 4] it follows that the decay of radioactive elements contained in the carth's crust
and mantle makes a substantial contribution to the energy balance of the carth. Thercfore, when stating a
mathematical model, it is necessary to take into account the heat release of radioactive clements as a result of their
decay.

In the works published for the past 20 years and devoted to the development and use of quantitative
methods for investigating thc zones of subduction (underthrust) of lithospheric platforms, thermomechanical
convection is predominantly simulated and the stressed state is determined (see, for example, |2, 5-7).

The problem of determining the geometric form of the subsided portion of a subducted platform by
quantitative methods remains virtually open. In |1] a model is suggested that explains the mechanism of
underthrust from the viewpoint of the gravitational instability of the heavy lithosphere above the lighter
asthenosphere. The geometric form of the subsided portion of a subducted platform obtained in [5] is disputable.
since at the present time there are no reliable proofs supporting the existence of an abnormal mantle.

Investigation of the olivine—spinel phasc transitions and calculation of the stressed state of the subsided
portion of a subducted platform are given in [8]. In that work the olivine—spinel phase transition is taken into
account as a density jump in the zone of transition. A mathematical model developed by the authors of [9 | makes
it possible to determine the depth of subsidence from the known trajectory and rate of subsidence of the platform.

Two-dimensional models of convection in a compressible liquid with constant and variable viscositics
presented in |3 showed that in the case of convection with a variable viscosity, the nonlincar inlcracli;m of
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Fig. 1. Diagram of the solid body—Iliquid phase transition. y, km; T, K..

compression, adiabatic and viscous heating, temperature-dependent rheological properties, pressure, and shear
stress leads to important consequences: the ascending flow expands and plumes are retained, the flow is strongly
concentrated as the subsidence region is approached and loses coupling with the inner regions of the cell, separating
from them by a zone of reduced viscosity. Around the submerging platform two regions of reduced viscosity are
formed, which effectively prevent mixing of the platform material with the surrounding mantle.

. According to seismic investigations, the material of the mantle under the continental and occanic platforms
is in a molten state to depths of up to 500 km.

In {1] a mathematical model of the simultancous motion of a ™~[t and a solid phase (partial melting) is
suggested. It is shown that under the action of deformation such a system stratifies, ic., a system of alternating
bands depleted and enriched in the molten substance is formed.

Melting of the mantle material occurs over a rather large range (from the solidus tempearture 7y to the
liquidus temperature Tp and is accompanied by the absorption of heat Ly (latent heat of melting). Curves of
phase-transition temperature versus depth that characterize the solid body —liquid transition diagram are presented
in Fig. 1.

If we assume that the material of the lithosphere and of the underlying mantle is a viscoelastic fluid, then,
using methods of numerical simulation, it is possible to describe the zone of subduction by a mathematical model
whose solution will allow us to obtain the temperature and velocity fields and to follow the evolution of the melting
front. In this connection, of great interest is determination of the trajectory of the melting front of the occanic
platform during its subsidence into the earth’s mantle. This will make it possiblc to estimate the effect of the
subsidence of the oceanic platform on the processes occurring in the Benjoff zone. In [2] a simplified model was
considered which involved Newtonian rheology and constant solidus and liquidus temperatures of the mantic
pyrolite. In the work considered, non-Newtonian rheology is introduced into the mathematical model; to calculate
the zones of partial melting, solidus and liquidus temperatures were used that depended on the water pressure and
concentration.

To develop a mathematical model for the subduction zone, the following assumptions were adopted:

1. The material of which the lithosphere and underlying mantle consist is considered a viscous
incompressible fluid.

2. The interface between the lithosphere and the mantle is the isotherm of the solidus temperature of
peridotite 7.

3. The viscosity, thermal conductivity, and heat release of the material are determined as functions of the
position of the phasc interface between the lithosphere and mantle in the following manner:

{,“2\'12»%2} for T >T;



The subscript | refers to the characteristics of the lithospherc and subscript 2 to the characteristics of the
earth’s mantle.

Determination of the rheology of the lithosphere, asthenosphere, and mezosphere is a rather complex
problem. Some approaches to the description of their rheology are presented in [4, 10, 11 ]. And though the existing
opinions on the rheology of the lithosphere and of the carth’s mantle arc ambiguous, the most appropriate depend-
ence for calculation of dynamic viscosity is the following:
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where T is the temperature, £* and V" arc the energy and volume of activation, R is the gas constant, 1 is the
shear stress, 7, is the shear stress at which the dislocation mechanism of creep appears, and £ is the Boltzmann

constant.
The quantity 1, is defined by the empirical formula

-4
r,=4-10“(T1—0.25) . (N/mb),

m

where T}, is the melting temperature of dry fosterite.
We shall adopt dry fosterite as the basic component of the mantle; then for a developed flow the quantities

entering into formula (2) will have the following values:

T, =2170 + 1.5-10 %y, K; ¥ =1.1-10"°, m’/kmole; E"=5.225-10" J/mole;

pressurc P is determined as the hydrostatic pressure: P = Py + pgy, N/m?.

When solving the Navier-Stokes equations of motion, the value of dynamic viscosity was determined from
relation (2). Along with relation (2), we also considered Newtonian rheology, where the dvnamic viscosity assumed
the following values:

po= Moy T < T 3)
Ko T = T,.

The usc of expression (3) to determine viscosity makes it possible to model the asthenospheric layer as a
region owing its existence to partial melting of the mantle. The coefficient of the drop in viscosity A changes within
the limits of 1-1000. To decrease the fluctuations of the solution, in calculations the dependence (3) was
approximated by a smooth function

T, - T . (4)
h

1
035+ 7 tan

H=pugll+(A~-1]

Calculations were also performed for constant (mean integral) valucs of .
4. The valuc of the matertial density depends on the position of the phase interphase between the
lithosphere and mantle and is determined from the formulas

pi (1 =BTy for T <Tg; (5)
py (1 =BTy for T>T; '

3. According to investigations of the fractional melting of the mantle pyrolite carricd out by Ringwood and
Green, the relative quantity of the solid phase y = Vi/(V, + V) (V,, V; are the volumes of the solid and liquid



TABLE 1. Physical Parameters

Parameiters Lithosphere Mantle
Viscosity u , (Pa-secc) 1022 1020
Thermal conductivity 1, W/ (m-K) 3 S
Density p, kg/m?> 3000 3300
Heat rclease gy, W/m?® -5-107% 1077
Specific heat capacity ¢,, J/ (kg-K) 1200 1200
Coefficient of volumetric cxpansion §, K™ 3107° 31079
Heat of melting Ly, J/kg 4-10° 4-10°

phases) that characterizes the melting and crystallization of the material is a function of the temperature, pressure,
and of the concentration of the water. In the calculations in the present work, we used the following relation {9]:

l for T<T,;
T-T,\"° T-T,)\?
Y = 2 7’:-?,—1' -3 ?/‘:‘“77: + 1 for TSS T < TI; (6)
0 for T>T,.

Here T and T, are functions of the water pressurc and concentration. It is assumed that the upper and lower zones
of partial melting arc determined by the limiting value yy, = 0.95 for the mantle conditions, i.c., when y < yin
the mantle material is in a liquid state and when y > vy, it is in a solid state.

The values of the physical quantities for the lithosphere and mantle are presented in Table 1.

According to the hypothesis advanced by G. Hess in 1960 [12], the motion of the lithospheric platforms
from the zones of formation (middle oceanic crests) to the zones of underthrust (island arcs) is rectilinear, therefore
the problem of subsidence of the lithospheric platform into the carth’s mantle can be considered two-dimensional
(the x axis is directed along the motion of the platform, the y axis is directed along the normal to the plane of the
platform). The geometry of the problem is depicted in Fig. 2.

Within the framework of the assumptions made, the mathematical model of the problem considered in the
present work is described by the following system of differential equations

motion cquations of a solid medium (Navier-Stokes equations):
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where 7 is a certain fixed temperature (reference point);
continuity cquation:

Py vy, &)
a1 dx ady

energy conscrvation equation:
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Fig. 2. Physical statement of the problem.
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p for T < Tg;
Cof = csz,,—‘f/—Vli for T, < T <T); (h
¢p for T>Ty;

state equation:

p=p; (1 =pT), (=1, 2. (12

The model adopted employs the Boussinesq approximation.

We seek a solution of the problem in a rectangular region with dimensions /, along the x axis and /, along
the y axis (Fig. 2) in which two lithospheric platforms move opposite each other. Underlying the platforms is the
mantle.

The upper boundary of the computational domain is assumed to be the day surface of the earth. At a depth
of about 100 m from the carth’s surface the temperature is virtually constant and cqual to 7| = 273 K, with diurnal
and annual variations virtually not influencing its magnitude. The velocities of the platforms on the upper boundary
are known and equal to u, = 1 cm/year for the continental platform and to u, = 6—9 cm/year for the oceanic
platform (3, 4.

The boundary conditions for the temperature and velocities on the upper boundary of the computational

domain, i.c., on the day surface of the carth, will have the following form

1 ) l
4\'>-2'£, /'\,, [) =ug, o u (—2“( /).. 1) =0: v(x, [y. n=0. (13)

u (.\'<—2-. l'\., 1) =uoi U

It is most convenient to let the lower boundary of the computational domain be at a depth at which
perturbations of the temperature and velocity fields caused by subsidence of the lithospheric platform arc absent.
From scismic investigations of zones such as island arcs and active continental margins, it follows that a subducted
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platform is subsided to a depth not cxceeding 700 km {3, 4]. In the adopted computational domain the lower
boundary corresponds to the depth of the platform subsidence /, = 1000 km. Unfortunately, there are no accurate
data on thc temperaturcs and velocitics at this depth. According to the investigations and calculations carried out
in [3, 4], the valuc of the temperature T3 at a depth of 1000 km is taken to be equal to 2400 K and the absence
of any flow is assumed for the velocity ficld.

Proceeding from the foregoing, the boundary conditions at the lower boundary of the region considered
have the following form:

Tx,0,0=Ty; u(x,0,0=0; vx,0,n=0. (14)

The next complex problem is determination of the extent of the computational domain in the x direction.
Since two lithospheric platforms with a total extent of 15,000—20,000 km, participatc in the process of subduction
(thrust over and under), then, taking into account the length of both platforms, it will be practically impossible to
solve the problem, because the thickness of the subducted platform is on the order of 70 km, which is less than
1/200 of the lengths of both platforms. However, a more thorough analysis of the pattern of flow and temperature
ficld shows that the vertical velocity and tempcrature profiles should change only in the zones of the formation and
subsidence of the platforms [3, 4, 131. Over the remaining portions the vertical velocity and temperature profiles
do virtually not change for a rather long period of time.

Thus, if we exclude from the computational domain the portions removed from the zones of formation and
subduction of the platforms at a distance of more than 2000 km, we may assume that the flow pattern and
temperature fields in these zones change insignificantly. This assumption is confirmed by the results of numerical
calculations.

Taking this assumption into account, wc included in the computational domain two platforms, cach having
a length of 3000 km. It is assumed that the results of solution of the problem are quite adequate for longer platforms.
Thus, the computational domain is bounded by rift zones that arc characterized by periodicity conditions for
temperature and by slippage conditions for velocity. The boundary conditions on the lateral boundaries of the

computational domain will have the form

QI_(O_')”_Q:O; W (0, v, 1) =0; w:o;

ax ax
(15
aT (I, 3, 1) v (L)
= 0; u(ly,y0)=0; T 0.

Now, it is necessary to write the initial conditions. However, the selection of initial conditions for
temperature is a rather complex and as yet unsolved problenmi. Therefore, in the present work, without claiming
absolute validity of the choice, we adopt the following initial conditions:

T,~T, 4
T=T,~ 2y x€10:L]; y€10:93-107 ]
93-10
T . —T
T=T, -y =9310Y x€ 1041 y€[0;93-10% 10°); (16)
7-10

i,y =vigyn 0 =0,

Here v is measured in meters. -
Let us write the problem in dimensionless form. For this purpose, as a scale we take the following quantities:

the distance is given by the height of the region /,\'3



velocity by 2 ; temperature by (T, — T);
poply

{

AW(T, = T
viscosity by u,;pressure by [2 ; hecat release by —2-—2—2——~—]) time by )fi—-ﬁ (17
pz(‘ y

After simple transformations, the dimensionless equations that describe the natural convective heat transfer

in the subduction zone will have the form
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Ra=Pr-Gr= Prw——&——z—z————l— — Rayleigh number ;
1y
24
K = 42 — dimensionless number .
pzt [2 (T') —_

The boundary conditions in dimensionless form arc

6(X,1,1)=0; 6(X,0,1)=1; (22)

96 (0, Y, 1) 00 (L /1, ¥, 1) _o- (23)
aX - dX T
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UX <172, 1,1)=U, = u.Q}‘U; @
2

. [{
UX > 12,1, 1) = Uy = ug 522 (23)
2 N
U@, Y1) = U/, Y, 1) =U(X,0,7)=0; (26)
IV (0, Y, 1y VLI, Y1) (27)

oX - 9X =V(X.0,1)=0;

1 for 6 < 6_;

)

_ o T+ A7 LA )
C=<1-—sign(f -G)Stc 50 for 6, =6 <0,;

1 for 6 >86,;

y  6(0-6)E0-6)
06 6 -6)

Here Ste = ¢,(T2 — T1)/ Ly is the Stefan number.
The initial conditions in dimensionless form are

= - S ¢ ! . e A 28
6=1-—753 ¥ X¥EI0, /5] YE0.093]; (28)

6 = 93155—7’ Xe€0,/L]: Ye1093,1]; (29)

UX,Y,0)=V(X,¥,0=0.

Estimating the inertial terms on the left sides of equations of motion (18) and (19) and taking into
consideration the value of the Prandtl number Pr = 2.4- 1022, we conclude that they are much smaller than the
viscosity terms; therefore, we ignore them in what follows.

The values of the dimensionless numbers for the problem are: Ra=1.7- 107; Pr=24- 10%%; Ste = 6.4; K =
31078

Gravitational convection in a liquid layer appears when Ra 2 Rag., where Rag is the critical Rayleigh
number, whose value depends on the type of boundary conditions. For the problem considered Rag, ~ 1700, which
is much smaller than Ra = 1.7-107. From this we can conclude that the convection is developed in the upper mantle
f the carth, since the Pr number is large; the intensity of convection in the mantle is insignificant: the motion of
the mantle is slow and the mode of flow is laminar.

It is cvident that the dimensionless complex K, which takes into account the contribution of dissipation
energy to the energy balance, will be important only in the region of high velocity gradicnts.

The differential cquations and boundary conditions (18)-(29) fully describe a mathematical model “that
allows onc to calculate the geometry of the melting front of the oceanic lithosphere in the zone of subduction.
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